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PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF

GRAPHS

ALEX POTHEN., HOILST SIMONt AND KANG-PU PAUL LIOU$

Abstract. The problem of computing a small vertex separator in a graph arises in the context of

computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach

to computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes
can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian

eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path

graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm
is designed to compute a vertex separator in a general graph by first computing an edge separator in the

graph from an eigenvector of the Laplaeian matrix, and then using a maximum matching in a subgraph to

compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm

are presented, and these are compared with separators obtained from Automatic Nested Dissection and the

Kernighan-Lin algorithm. Finally, we report the time required to compute the Laplacian eigenvector, and
consider the accuracy with which the eigenvector must be computed to obtain good separators. The spectral

algorithm has'the advantage that it can be implemented on a medium size multiprocessor in a straight
forward manner.
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1. Introduction. In the solution of large, sparse, positive definite systems on parallel

computers, it is necessary to compute an ordering of the matrix such that it can be factored

efficiently in parallel. For large problems, the storage required for the structure of the

matrix may exceed the storage capacities of a single processor, and this parallel ordering

itself will need to be computed in parallel. One strategy to compute a good parallel order is

to employ the divide and conquer paradigm: Find a set of vertices in the adjacency graph of

the matrix, whose removal disconnects the graph into two nearly equal parts. Number the

vertices in the separator last, and recursively number the vertices in the two parts by the

same strategy. This strategy is employed in the well-known Nested Dissection algorithm for

ordering matrices for sparse factorization.

In computing an ordering by the above approach, at each step, the following Partitioning

problem needs to be solved. Given an adjacency graph G of a sparse matrix, this problem is

to find a vertex separator S such that S has few vertices and S disconnects G \ S into two

parts A, B, with nearly equal numbers of vertices.
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In this paper, we consider a spectral algorithm for solving the partitioning problem. We

associate with the given sparse, symmetric matrix (and its adjacency graph), a matrix called

the Laplacian matrix. We compute a particular eigenvector of the Laplacian matrix, and

use its components to initially partition the vertices into two sets A _, B _. The set of edges

joining A _ and B _ is an edge separator in the graph G. A vertex separator S is computed

from the edge separator by a matching technique.

This spectral algorithm has three features that distinguish it from previous algorithms

that are worthy of comment.

First, previous algorithms for computing separators, such as Nested Dissection or the

Kernighan-Lin algorithm make use of local information in the graph, viz. information about

the neighbors of a vertex, to compute separators. The spectral method employs global

information about the graph, since it computes a separator from eigenvector components.

Thus the spectral method has the potential of finding separators in the graph that are

qualitatively different from the separators obtained by previous approaches.

Second, we can view the spectral method as an approach in which a vertex in the graph

makes a continuous choice, with a weight between +1 and -1, about which part in the initial

partition it is going to belong to. All vertices with weights below the median weight form

one part, and the rest, the other part. In the Kernighan-Lin method, each vertex makes a

discrete choice (zero or one) to belong to one set. The weights in the spectral method can

be used to move a few vertices from one part to the other, if a slightly different partition is

desired in the course of the separator algorithm.

Third, the dominant computation in the spectral method is an eigenvector computation

by a Lanczos or similar algorithm. This distinguishes the new algorithm from standard

graph theoretical algorithms computationally. Most of the computation is based on standard

vector operations on floating point numbers. Becasue of its algebraic nature the algorithm is

parallelizable in a fairly straight forward manner on medium-grain multiprocessors used in

scientific computing. Furthermore, since most of the computations are also vector floating

point operations, this algorithm is well suited for vector supercomputers used for large scale

scientific computing.

This paper is organized as follows. We include background material on the spectral

properties of Laplacian matrices and their relevance to graph partitioning in § 2. We also

review earlier work on computing edge separators from the eigenvectors of the adjacency ma-

trix in this section. In § 3, we obtain lower bounds on the size of the best vertex separators

of a graph in terms of the eigenvalues of the Laplacian matrix. Two different techniques for

proving lower bounds are illustrated: One uses the Courant-Fischer minimax criterion, and

the second employs an inequality from the proof of the Wielandt-Hoffman theorem. _Ve then

show that the spectra of rectangular and square grid graphs can be computed explicitly from

the spectra of path graphs by employing suitable graph products and Kronecker products

in § 4. We proceed to show how good edge and vertex separators in the grid graphs can be

computed from the spectral information. In § 5, we describe our heuristic spectral algorithm

to compute vertex separators in general graphs. The algorithm initially computes an edge

separator, and then uses a maximum matching in a subgraph to compute the vertex sepa-

rator. Results about the quality of the separators computed by the algorithm is presented



in § 6. In this section, we also compare the spectral separators with separators computed

by Automatic Nested Dissection and the Kernighan-Lin algorithm, as well as with results

obtained recently by Liu [31] and Leiserson and Lewis [29]. The time required to compute

the Laplacian eigenvectors with the Lanczos algorithm and the accuracy needed in the eigen-

vector to obtain good separators are addressed in § 7. The final § 8 contains our conclusions

and some directions for future work.

2. Background. Let G : (V,E) be an undirected graph on IvI = - vertices. The

n x n adjacency matrix A = A(G) has element a_.,_ equal to one if (v,w) E E, and zero

otherwise. By convention, a_.,_ is zero, for all v E V. The rows and columns of the matrices

associated with a graph are indexed by the vertices of the graph, their order being arbitrary.

Let d(v) denote the degree of a matrix, and defne D to be the n x n diagonal matrix with

el,,,,, = d(v). The matrix Q = Q(G) = D - A is the Laplacian matriz of G.

Let the edges of the graph G be directed arbitrarily, and let C denote the vertex-edge

incidence matrix of the directed graph. The IV I x IEI matrix C has elements

+1c.,,,e = _-i

if v is the head of e

if v is the tail of e

otherwise.

It is easy to verify [7] that Q(G) = CC t, and that Q is independent of the direction of the

edges in C.

The spectral properties of Q have been studied by several authors. Since

z_tOg = x_CC%_

=
= Z -

(v,,.)eE

it is easily seen that Q is positive semidefiuite. Let the eigenvalues of Q be ordered

$1 = 0 _<)_2_ ... $..

An eigenvector corresponding to )q is e_, the vector of all ones. The multiplicity of the zero

eigenvalue is equal to the number of connected components of the graph. If G is connected,

then the second smallest eigenvalue Az is positive. We call an eigenvector V_corresponding

to )t2, a second eigenvector.

Fiedler [17, 18] has studied the properties of the second eigenvalue A2 and a corresponding

eigenvector y_. He calls _2 the algebraic connectivity, and relates it to the vertex and edge

cortnectivities of a graph. He has also investigated the partitions of G generated by the

components of the eigertvector y_. One of his results of interest in this paper is the following.

THEOREM 1. Let G be a connected graph, and let y be an eigenvector corresponding to

A2. For a real number r >_ O, define V_(r) = {v E V : y,, > -r}. Then the subgraph induced

by V_(r) is connected. Similarly, for a real number r <__O, let the set V2(r) = {v E V : y_, <

Irt}. The subgraph i,_duced by W2(r) is also co,_nected.
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In both sets V1 and V2, it is necessary to include all vertices with zero components for

the theorem to hold. The role played by these latter vertices in the connectedness of the two

subgraphs has been investigated at greater length by Powers [40, 41].

A corollary to this result is that if W # 0 for all v E V, then the subgraphs induced by

the sets

P = {vEV:v,,>O},

N = {vsV:w<O}

are both connected subgraphs of G.

The eigenvectors of the adjacency matrix corresponding to its algebraically largest eigen-

values have also been used to partition graphs. It is of interest to ask if a similar theorem

holds for an eigenvector corresponding to the second largest eigenvalue of the adjacency

matrix.

Let z_, V__denote eigenvectors corresponding to the Mgebraically largest and second largest

eigenvalues, respectively, of the adjacency matrix of G. By Perron-Frobenius theory, it is

known that all components of z_ are positive. If a is a nonnegative number, then the subgraph

induced by V1 = {v E V : y_ + c_z_ >_ 0} is connected. Similarly, if a is a nonpositive number,

then the subgraph induced by V2 = {v E V :y_ - lalz_ < 0} is also connected.

Mohar [33] has made use of the second Laplacian eigenvector V_to study the isoperimetric

number, i(G). If U is a subset of the vertices of the graph G, and 6U denotes the set of edges

with one endpoint in U and the other in V \ U, then

16ui
i(G)= minivt_<./2iVl

Mohar proved that

1A

where A is the maximum degree of a vertex. The proof of the upper bound makes use of

the set W = {v E V : y_ > 0}, with the sign of the eigenvector chosen such that W has no

more than n/2 vertices.

The relationship of the Laplacian spectrum to several graph properties have been con-

sidered by several authors; two recent survey articles by Mohar [34] and Bien [6] describe

some of these results.

Spectral methods for computing edge separators have been considered by several re-

searchers.

Donath and Hoffman [12] obtain lower bounds on the size of an edge separator in terms

of the eigenvalues of the matrix A + U, where A is the adjacency matrix, and U is a diagonal

matrix with the property that trace(U) = -2[E[. Barnes and Hoffman [4] consider graphs

with weights on the edges, and obtain lower bounds on the weights of edge separators in terms

of the eigenvectors corresponding to the algebraically largest eigenvalues of a matrix A + D.

Here, A is the weighted adjacency matrix, and D is an n x n matrix such that the elements

of A + D sum to zero. They formulate the partitioning problem as a quadratic integer
4



programming problem, and then approximate the latter problem by linear programming

problems, whose solutions yield the lower bounds.

Barnes [3] shows that the problem of partitioning a graph into k > 2 parts such that the

number of edges cut by the partition is minimum is equivalent to a matrix approximation

problem, in which the adjacency matrix is approximated by a partition matrix P. The

n × n matrix P has element Pld equal to one if vertices i and j belong to the same part,

and zero otherwise. He finds a heuristic solution to this approximation problem by solving

a transportation problem involving the eigenvectors corresponding to the k algebraically

largest eigenvalues of A.

Boppana [9] has described a spectral method using the eigenvalues and eigenvectors of

the adjacency matrix which he proves will find a minimum size bisection for almost all graphs

in a certain class of random graphs.

3. Lower Bounds. We obtain lower bounds on the sizes of vertex separators in terms

of the eigenvalues of the Laplacian matrix Q(G) in this section. The lower bounds hold for

any vertex separator in the graph; in particular, these bounds apply to the smallest separator

in the graph. We assume the graph G to be connected.

Let G = (V, E) denote a graph on IVl = n vertices, and let A be a subset of its vertices.

Denote by p(v, A) the distance of a vertex v from A, i.e., the fewest number of edges in a

shortest path from v to a vertex in A. Let S denote the set of vertices which are at a distance

less than p > 2 from A, and not belonging to A. Hence

s = e v \ A: A) < p}.

Define B = V \ (A U S); if B # 0, then the distance between A and B, p(A,B) = p. If

p > 2, the set S is a wide separator that separates A from B. If p = 2, we get the commonly

used notion of separators. Wide separators have been used in sparse matrix algorithms by

George and Ng [21], and Gilbert and Zmijewski [22].

Let EA denote the set of edges with both endpoints in A, and EAs denote the set of

edges with one endpoint in A, and the other in S. The sets EB, Es, and Ess are defined

similarly. In the following, it wiU be convenient to work with the fractional sizes a = IAI/n,

b - IBI/n, and = ISl/n. The degree of a vertex v win be denoted by d(v), and A win

denote the maximum degree of vertices in G.

The first result is a lower bound on the size of a wide separator separating any pair of

vertex disjoint sets A and B which are at a distance p from each other.

TrlEOREM 2. Let A, B be disjoint subsets of vertices of G which are at a distance p > 2

from each other. Let S denote the set of vertices not belonging to A which are at a distance

less than p from A. Then

s 2+_s-p2a(1-a) >0, where/3=(A/A2)+p2a-1.

Proof: Let _e, 0 be the vector of all ones and all zeros, respectively. The Courant-Fischer



minimax principle states that

(I)

_2 = rain z_JQz_

e_'z_=o

= rain E(+,_)_s(z+- zj) _
•__0_ E;'=__+

e_tz._=O

Using the Lagrange identity

2 (z+ =j)2,n X i -- X i -: --

i=1 i,j= l
i<j

Fiedler [18]derived the following inequality, valid for all non-constant n-vectors z__,from (1).

(2) n Z (_'- _)' >-4 Z (_,- _)_.
(i,j)EE i,jEV

i<j

We prove the result by making an appropriate choice of z_ in the above inequality.

Choose the v-th component of z_ be

2
1 rain ir +,- j%+,l

z, = --- tp, p[ v, A )._.
P

If v E A, then z_ = 1; if v E B, then z,, = - 1; and if v E S, then - 1 +(2/p) < z,, < 1- (2/p).

Also, if v, w are adjacent vertices, then Ix. - z_, I < 2/p.

The left-hand side of equation (2) has nonzero contributions from three terms, and it

can be bounded from above as follows.

(3)

(+,- ++)_
(iS)EE

=l=+ +,,
(',j)_ (i,j)_s (id)+E

\iEA,jES iEB,jES iES,jES/

4 (IEAsl + IEssl + IEsl)

4

Similarly, nonzero contributions to the right-hand side of equation (2) also come from

three terms, and we obtain a lower bound as shown.

iS_v
i<j

\iE ,jES IEA,jEB iEB,jE$

> i-(I- ) n'as + (l-(-l))'n'ab +

6

( 2)-1-(-1+-) n2bs
P



4il 2

-- p2 ((a + 5)8 'k p2a(1 -a- s))

4n2((1- +p2a(1- a - 8)).
(4) - p2

Using inequalities (3) and (4) in Fiedler's inequality (2), and canceling common terms,

we obtain

aA >_ A2 ((I -- 8)8 q- p2a(1 -a- s)).

After some rearrangement, this yields the desired result. •

Fiedler [17] proved that A2 satisfies

)_2 _ (n/(n - 1)) rain {d(v) : v • V}.

Mohar [33] proved that for all graphs except the complete graph Kn, A > A2. Thus for all

graphs except the complete graph, the ratio A/)_2 >_ 1, and fl is a positive number. Indeed,

for all the adjacency graphs of sparse matrices that we have computed partitions, the ratio

A/A2, and hence j3, is much larger than one.

COROLLARY 3. If fl > p, then

8 >__p:a(1- _) _ p2_(1-_)
/7 (A/_2) + p2a- 1"

Proof: Let sl, 82 be the roots of the quadratic equation corresponding to the inequality

in Theorem 2, with sl < 82. Then s _> 82, and

1 (-/7 + (732 -b 4p_a(1 - a)) 1/2)
82_

If/3 __ 2p(a(1 - a)) 1/2, then expanding the rhs in power series yields the result.

It remains to verify the condition of the coronary. Since (a(1 - a)) in has its maximum

value 1/2 when 0 __ a g 1, the power series expansion is valid when 73 __ p. •

The corollary exhibits the dependence of vertex separator sizes on A2: the smaller the

second eigenvalue, the larger the ratio A/A2, and the smaller the lower bound on the vertex

separator size. The corollary also shows the dependence on the lower bound on the distance

p and the fractional size of the set A.

The common situation of a separator corresponds to p = 2. In this case, the quadratic

inequality becomes

s 2+fls-4a(1-a)>_O, with_=(A/A2)+4a-1.

After some simplification, it can be seen that the inequality in Theorem 2.1 of Alon, Galil,

and Milman [11 is equivalent to the above inequality. In this case, when/3 >_ 2, we obtain

the lower bound

s > 4a(1 - a)
- (A/4) + 4a -- i"
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Mohax (Lemma 2.4, [32]) has obtained a lower bound on vertex separators in terms of

the ratio _,,/_2.
We can also obtain lower bounds on edge separators. By omitting the last step in

equation (3), and replacing the sum lEAs[ + IEBsl + IEs[ by IEI- IEAI- IEBI, we have

IEI - [EA[ - ]Esl > ),,n ((a + b) - (a + b) 2 + p2ab) ,

for two vertex disjoint sets A, B which axe a distance p apart.

Alon and Milman [2] have obtained the inequality

p2 )_2n p2 )_2nab
IEI-IEAI-IEBI> =((i/a) + (lib)) (a + b)"

These techniques can also be used to bound the number of edges separating two disjoint sets

of vertices from each other.

A second lower bound. We now obtain a lower bound that exhibits another factor

influencing the size of vertex separators. The technique used is derived from the Wielandt-

ttoffman theorem, and has been previously used by Donath and Hoffman [12] to obtain lower

bounds on edge separators.

Let S be a vertex separator that separates the graph G into two sets A and B, with

IAI > IBI > ISI. Let d(v) denote the degree of a vertex v, and let i(v) denote the 'internal'

degree of v, i.e., the number of edges incident on v with the other endpoint in the same set

aS _.

Recall that the eigenvalues of the Laplacian matrix Q are ordered as

_1 = 0 < _2 _< _3... <_ _n.

Let the n × n matrix J = diag(Ja, Jb, Jc), where J_ is the na × na matrix of all ones, and Jr,,

Jc are similarly defined. The eigenvalues of J are

_tl = na > tz2 = nb > tz3 = ns > l_4 .... #. =0.

THEOREM 4. Let S be a vertex separator that divides a graph G into two parts A, B,

with IAI > IB[ _> IS[. Then

s > (1 - a))_2
- 2A -- ($z --)_:)"

Proof: From the proof of the Wielandt-Hoffman theorem [26] (see also [121),

n

trace(-OJ) _< __.(-)_,1#,.
i=1

Ca.nceling out the minus signs yields

n

(5) trace(Q J) _ _ A,#_.
i=1

8



We now compute both sides of the above inequality.

The right-hand side is

(6)

n

i=I

= na.O+nb.)_2+ns.)t3

= nbX2 +nsX3

= n(1 - a- s)X2 + nsXs.

To evaluate the left-hand side, we partition the symmetric matrix Q to conform to J:

Q Q.. OQ..)
o Q_ Qb. •

Qi, Q_. Q-

(7)

trace(Q J) = trace(QooJo) + trace(Q_Jb) + trace(Q.J. )

(_ + _-_ + _) d(v) - i(v)
yEA yES yES

- 2(IEI- IEAI- IEBI- IEsl)
_< 2(IEI- IEAI- IEBI)
= 2nsA.

Substituting the inequalities (6) and (7) in (5), we obtain

2nsA > n(1 -- a-- s)X2 + nsXs.

After some rearrangement this yields the final result. •

This last lower bound on a vertex separator size shows as before that the magnitude of

A2 influences the lower bound; it also shows that the 'gap' between Xz and A2 has an effect.

The bounds are large when the gap is large.

Donath and Hoffman [12] obtained lower bounds on the number of edges cut by the

partition when the set of vertices is partitioned into k sets, in terms of the eigenvalues of a

matrix M = A + U, where A is the adjacency matrix and U is a diagonal matrix constrained

only by the requirement that its diagonal elements sum to -2[El.

Finally, a word of caution is in order about these lower bounds. These bounds should

be considered the same way one treats an upper bound on the error in an a priori roundoff

error analysis [44] (cited in [23]). The lower bounds obtained are not likely to be tight,

except for certain classes of graphs. They do illustrate, however, that a large ),2, with an

accompanying small A/A2, will result in large sizes for the best separators in a graph.

4. Partitions of grid graphs. In this section we show that the second eigenvector of

the Laplacian matrix can be used to find good edge and vertex separators in grid graphs. The

vertex separators obtained will be identical to the separators at the first level in a theoretical

nested dissection (ND) scheme.
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FIG. 1. The second Laplacian eigenveetor of the path.

To compute separators by this technique, we need to obtain the eigenvectors of grids.

We will show that the Laplacian spectra of grid graphs can be explicitly computed in terms

of the Laplacian spectra of path graphs. Thus we can compute the second eigenvectors of

the grid graphs in terms of the Laplacian eigenvectors of the path graph.

The path graph. Let P,_ denote the path graph on n vertices. For concreteness, we

assume in the discussion to follow that n >_ 2 is even. We number the vertices of the path

from 1 to n in the natural order from left to right. Let Cn --- _r/n. We denote the elements

of a vector z_ by writing its i-th component as (z_).

LEMMA 5. The Laplacian spectrum of P,, is

1

= 4 sin 2 (_(k - 1)¢.),

= ( cos((/- 1/2)(k- 1)¢n) ), fork= 1,...,n, i= 1,...,n.

As k ranges from 1 to n, the angle (1/2)(k- 1)¢. varies from zero to a'/2; hence

the eigenvalues are ordered as )h,. < _,,,... < _,_,,_. Note that )_1,. = 0, z_l,,, = !, and

A2,- = 4 sin 2 (_), and z_.2,,_= ( cos((/- 1/2)¢,) ). The components of !_2., corresponding to

vertices of P30 are shown in Fig. 1.

Let zt denote the median (n/2-th largest) component of the second eigenvector, and

partition the vertices of the path into two sets, one set consisting of all vertices with com-

ponents less than or equal to the median component, and the other consisting of all vertices

with components larger than the median component. This partitions the path into equal

size subsets of vertices, one consisting of the vertices with positive eigenvector components

and the other consisting of vertices with negative components.

If z, denotes the component of the second eigenvector corresponding to vertex v, ]z,-z_,]

is a measure of the distance between the vertices v and w in the path: Fiedler calls this the

10



algebraic distance between v and w.

Graph and Kronecker products. We can compute the spectra of grid graphs from

the spectra of the path graph. We require the concepts of graph products and the Kro-

necker products of matrices. Our notation for graph products is from Cvetkovic, Doob, and

Sachs [11], and a good discussion of Kronecker products may be found in Fiedler [19].

For i = 1, 2, let Gi = (Vi, E/) be graphs. The Cartesian sum G1 + G2 is the graph

(V_ x V2, E), where vertices (il,jl) and (i2,j2) are joined by an edge if either il = i2 and

{jl,j2} is an edge in G2, or jx = j2 and {ix,i2} is an edge in G_.

The Cartesian product G_ "G2 is the graph (V_ × V2,F) where vertices (il,jl) and (i_,j2)

are joined by an edge if {i_,i2} is an edge in G_ and {jl,j2} is an edge in G2.

The strong sum G1 • G2 is the graph (V1 × V2, E U F); thus it contains the edges in both

the Cartesian sum and the Cartesian product.

It is easy to verify that the Cartesian sum Pn + P,,_ is the five-point m × r/grid graph,

and that the strong sum P,, @ P,_ is the nine-point rn × n grid graph.

Since th.e grid graphs can be obtained from appropriate graph products of the path

graph, the Laplacian matrices of the rrt × n grid graphs can be obtained from Kronecker

products involving the Laplacian matrices of the path graph. If C is a p × q matrix, and D is

r × s, the Kronecker product C ® D is the pr × qs matrix with each element dij of D replaced

by the submatrix ( Cdij ). (Equivalently we can consider each element caj of C replaced by

the submatrix ( cajD ).)

The five-point grid. We consider the rrt x n five-point grid, and without loss of generality

consider rrt < n. For concreteness, initially we consider the case when n is even, and rrt < n.

At the end of this section, we discuss the case when rt is odds or rrt = ft. We draw the rrt x n

grid with n vertices in each row and rn vertices in each column.

Let Q denote the Laplacian matrix of the five-point rrt x n grid graph, R., denote the

Laplacian matrix of the path graph on n vertices, and 1,, be the identity matrix of order n.

Recall that )_k,n, z__,n denotes the k-th eigenpair (when eigenvalues are listed in increasing

order) of the path graph with n vertices. The following result is well-known; we include a

proof for completeness, and because we wish to indicate how a similar result is obtained for

the Laplacian spectrum of a modified nine-point grid.

Trlv.ortEM 6. The Laplacian spectrum of the rrt x n five-point grid is

tZlc.l = )ttc,n + .Xl,m,

_.t = Z__k.,,®_,,_, k=l,...,n, l=l,...,m.

Proof: It is easy to verify that the Laplacian matrix of the five-point grid can be expressed

in terms of the Laplacian matrix of the path graph as

Q= P_®I,_ + I.®P_.

The first term in the sum creates m copies of the path on n vertices, and the second term

adds the 'vertical' edges which join neighboring vertices in each column of the grid.

11



We show that Ak,t, z_k,z is an eigenpair of Q.

Qz_,,_ ® _,., = (e_®I_.)(_,.®_,,m) + (I.®e_)(_,.®_,,_.)
= (e_,.) ® (I._,,._) + (I._,.) ® (_,,_)
= Ak,.z__,. ® _,,,. + z__,. ® Az,,_,m

= (Ak,. + A+,.,)_,,, ® z,,,_.

The transformation from the first llne to the second line uses the associativity of the Kro-

necker product. •

The smallest eigenvalue #1,1 = $1,., + $1,,_ is zero, since Q is positive semidefmite. The

next smallest eigenvalue is either #2,1 or #1,2. Since

#2,1 = As,. + Al,.,, = 4 sin2(_),

gl,2 = At,.+ A2,,,. = 4 sin2(_),

and

and m < n, the second smallest eigenvalue is/z2,1. The corresponding eigenvector is

y_2,1= _..® a_,..= (cos(i- I/2)¢.)® !.

The components of the _2,1 are constant along each column of m vertices, and the

components decrease from left to right across a row. Columns numbered 1 to n/2 have

positive components, and the rest of the columns have negative components. The second

eigenvector components for the m × n five-point grid are shown in Figure 2.

These results show that the second eigenvector of the grid can be used to compute

good edge separators and vertex separators. Let y_ denote this eigenvector in the following

discussion, and let Yt denote the median component ((mn/2)-th largest component out of

ran). From the preceding discussion, yt corresponds to the components of the vertices on

the n/2-th column. Let y_ denote the eigenvector component corresponding to vertex v.

COROLLARY 7. Let V denote the set of vertices of the five-point m × n grid (m < n, n

even}, and let V be partitioned by its second eigenvector as follows:

A'={v:y,,<y,}, B'=V\A.

If E' denotes the set of edges joining A' to B', then E' is an edge separator of size rn which

separates the grid into two parts each with (ran�2) vertices. Further, if S denotes the set of

endpoints of E' which belong to B', then S is a vertex separator of size m which separates

the grid into two parts of (ran�2) and m((n/2)- 1) vertices.

The Corollary follows from noting that A' consists of vertices in the columns 1 to n/2

of the grid, and B' is the remaining set of columns. The edge separator E' consists of the m

edges of the grid which join vertices in column n/2 to column (n/2) + 1. Finally, the vertex

separator S consists of vertices in column (n/2) + 1. Note that the vertex separator is the

same as the separator at the first level found by theoretical nested dissection. Buser [10] has

shown that the edge separator E' yields the optimal isoperimetric number for grid graphs.
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The secondadjacencycigcnvcctorofthegrid.

FIG. 2. The second Laplacian eigenvectorof the._ve-pointgrid.

We now consider the two special cases. One corresponds to the number of columns

r_ being odd. Then vertices in the middle column ((n -F 1)/2-th column) have eigenvector

components equal to zero; columns numbered smaller than the middle column have positive

components, and columns numbered higher have negative components. Again, across each

row, the components decrease from left to right.

The second case corresponds to a square grid, rn = n. Then /_2,1 = l_1,2, and the

second smallest eigenvalue of Q has geometric multiplicity two. The two linearly independent

eigenvectors obtained by the graph product approach are

Y---2,1= x._._,,_® xi,.

Y-1,2 = x-l, '_ ® x._,..

The eigenvector _,i has components as described earlier for the rectangular case, with
components constant along each column, and the components decreasing from positive to

negative values across each row. If rt is odd, the middle column has its components equal

to zero. The eigenvector Y-1.2 has components constant across each row, and decreasing from

bottom to top along each column. If n is odd, the middle row has components zero, and

rows below it have positive components, and rows above have negative components. If rt is

even, rows one to n/2 have negative components, and the rest have positive components.

From these two independent eigenvectors, we obtain a middle column and a middle row as

the vertex separators.

The nine-point grid. Let Q' denote the Laplacian matrix of the nine-point grid, and let
13



D,* be the rt × n diagonal degree matrix of the n-vertex path. As before, let R._ denote the

Laplacian matrix of the n-vertex path, and/,* the identity matrix of order n. It is again not

difficult to verify that

Q'= t_ ®I,_+ I,*@t_ + R,_®D,,, + D,*®R,,,-P_®R_.

Unfortunately, the spectrum of Q' can not be expressed in terms of the spectra of the path

graphs, as for the five-point grid.

However, we can first embed the nine-point grid graph in a modified grid, whose Lapla-

clan spectrum is computable in terms of the spectra of the path graphs, and then partition

the modified grid. We use the partition of the modified grid to partition the nine-point grid.

The necessary modification to the nine-point grid is as follows. Replace each boundary

edge of the m x n grid by two edges joining the same endpoints. Let Q denote the Laplacian

of the resulting multigraph.

THEOREM 8. The spectrum of Q is

ttk,t = 3($k,,* + )q,..) - Sk,.._z,-_

y__,t = z__,,*®_,,_, fork= 1,...,n, l= l,...,m.

Proof: It is easy to show that

Q = 3(P_ ® I,_ + I,* ® P_) - P_ ® P_.

A direct computation, as in Theorem 6, shows that /zk,t, Y-_,Zis an eigenpair of Q. •

Note that the eigenvectors of the modified nine-point grid are the same as the eigen-

vectors of the five-point grid. As in the five-point grid, the smallest eigenvalue #1,1 is zero;

the second smallest eigenvalue is #_,1 = 12 sin2(¢,*/2). The eigenvector _,1 is the second

eigenvector of the five-point grid. Hence the partitions of the modified nine-point grid are

exactly the same as those of the five-point grid.

Adjacency spectra of paths and grids. The adjacency spectra of grid graphs can

also be computed in terms of the adjacency spectrum of the path. Let A,* denote the

adjacency matrix of the path on n vertices, P,*, and denote a,* - _r/(n + 1). The adjacency

spectrum of P,_ is

Ak.,* = 2 cos(ka,*),

x__.,* = (sin(kia,,)), for k = l,... ,n, l=l,...,m.

Since a,* ranges from zero to 7r as k varies from 1 to n, the eigenvalues are ordered

The principal eigenvector z_l.,, = (sin(i0,_) ) has all positive components, as required by

Perron-Frobenius theory. A plot of the components of this vector against vertex numbers

shows a half sine curve, with its maximum near n/2, and near zero components at either ends.
14



The eigenvectorcorrespondingto the second largest eigenvector is z__2,n = (sin(2i0,) ), and

a plot of this vector against vertex numbers shows a full sine curve. It attains its maximum

near n/4, its minimum near 3n/4, and has near zero values at either end, and near n/2.

Recall that the components of the Fiedler vector of the path decrease monotonically from

left to right along the path. Hence a partition of the vertices with respect to some component

of the Fiedler vector yields two parts, each forming a connected subgraph. This may not be

true of a partition with respect to the second eigenvector of the adjacency spectrum, because

of its sinusoidal behavior.

Barnes's algorithm [3] for partitioning vertices into two sets such that a small edge

separator joins the sets makes use of the first two adjacency eigenvectors. If we apply

Barnes's algorithm to partition the path Pz0 into two sets of half the vertices each, one part

consists of the first thirteen vertices, and the last two vertices. This part has two connected

components. The second part consisting of vertices 14 to 28 forms a connected subgraph.

Now we consider the adjacency spectra of the grids. Let B, C denote the adjacency

matrices of the five and nine-point rn × n grids, respectively. It can be verified that

B = A,_®I,_+I,_®A,_,

C = A,_®I,,,,+I,_®A,_+A,_®A,..

The eigenvalues of B are

#k,Z=_k.,_+)q,_, fork=l,...,n, l=l,...,m,

while those of C are

#k,t = )_k,n + )q,,_ + _k.,_,_t,,_, for k = 1,... ,n, l = 1,... ,rn.

The corresponding eigenvectors for both grids are

Y-_,t = z-_.n ® z--t,m"

Again, for both grids, the largest eigenvalue is #x,1, and the the second largest is #2.1. The

corresponding eigenvector 2.1 is plotted in Figure 3.
Since a plot of the components of the second eigenvector across a row yields a full

sinusoidal curve, as in the case of the path, a partition of the vertices into two sets with

respect to some component of this vector may result in parts consisting of disconnected

subgraphs. Barnes's algorithm applied to the 15 x 30 grid yields two connected components

in one part, and a single component in the other part.

5. A spectral partitioning algorithm. In this section we describe an algorithm for

finding a vertex separator of a graph by means of its Lapacian matrix. Recall that we require

the separator to partition the graph into two parts with nearly equal numbers of vertices in

each part, and also that the size of the vertex separator be small.

The algorithm uses the second eigenvector of the Laplacian matrix to compute the

partition. We find z,,, the median value of the components of the eigenvector. Let A' be the

set of vertices whose components are less than or equal to zm, and let B' be the remaining
15



FieMlcrvectorof the fivepointgrid.

FIG. 3. The second adjacency eigenvector of the five- and nine-point grids.

set of vertices. If there is a single vertex with the component corresponding to z,_, then A'

and B' differ in size by at most one. If there are several vertices with components equal to

z,,_, arbitrarily assign such vertices to A' or B' to make these sets differ in size by at most

one.

This initial partition of G gives an edge separator in the graph. Let A1 denote the

vertices in A' which are adjacent to some vertex in B', and similarly let B1 be the set of

vertices in B' which are adjacent to some vertex in A'. Let E1 be the set of edges of G with

one endpoint in A1 and the other in B1. Then E1 is an edge separator of G. Note that the

subgraph H = (A1, B1, El) is bipartite.

We require a vertex separator of G, which can be obtained from the edge separator E1 by

several methods. The simplest method is to choose the smaller of the two endpoint sets A1

and B1. Gilbert and Zmijewski [22] have computed vertex separators from edge separators in

this manner in the context of a parallel Kernighan-Lin algorithm. Leiserson and Lewis [29]

have computed vertex separators from edge separators by a heuristic algorithm. However,

there is a better way to choose a smalles_ vertex separator which can be computed from the

given edge separator E'.

The idea is to choose a set S' consisting of some vertices from both sets of endpoints A1

and B1, such that every edge in E1 is incident on at least one of the vertices in S. The set S

is a vertex separator in the graph G since the removal of these vertices causes the deletion of

all edges incident on them, and this latter set of edges contains the edge separator El. The

set S is a vertez cover (cover) of the bipartite graph H.
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A cover of smallest cardinatity is a minimum cover. A minimum cover S of the graph H

is a smallest vertex separator of G corresponding to the edge separator El. The separator S

can be computed by finding a maximum matching in H. Details are provided later in this

section.

In general, S wiU consist of vertices from both A1 and B1. Let A, and B, denote the

vertices of S that belong to A1 and B1, respectively. Then S separates G into two subgraphs

with vertex sets A = A'\ A,, B = B'\ B,. The Spectral Partitioning Algorithm is summarized

in Figure 4.

1. Compute the eigenvector x_2 and the median value z,, of its components;

2. Partition the vertices of G into two sets:

A' = {vertices with z,, < z,_,};

B' = V \ A;
If tA'I - IB'I > 1, move enough vertices with components equal to z,,

from A' to B' to make this difference at most one;

3. Let A1 be the set of vertices in A' adjacent to some vertex in B';

Let B1 be the set of vertices in B' adjacent to some vertex in A';

Compute//= (A1, B1, El), the bipartite subgraph induced by the vertex sets A1, B1;

4. Find a minimum vertex cover S of H by a maximum matching;

Let S = A, U B0, where A° C_ A1, Bo C_ B1;

S is the desired vertex separator, and separates G into subgraphs with

vertex sets A = A' \ Ao, B = B' \ B,.

FIG. 4. The spectral partitiorting algorithm

Computing a minimum cover. We now describe how a minimum cover S of the

bipartite graph H is computed by matching techniques. In the following description, call

one set of vertices of the bipartite graph 'rows' and the other set 'columns'. A matching

in a graph is a subset of its edges which do not share a common endpoint. A mazimum

matching is a matching of maximum cardinality. A vertex is matched if it is an endpoint of

an edge in a matching, and unmatched otherwise. A bipartite graph has a perfect matching

if all rows and columns are matched in a maximum matching; necessarily, the number of

rows must be equal to be the number of columns. Figure 5 shows a maximum matching

in a bipartite graph. The matched edges are indicated with thick lines. There are several

efficient algorithms to compute maximum matchings in graphs.

A path in a graph is a sequence of distinct vertices vl, v_, ..., vk such that (vi,vi+l) is

an edge for i = 1, ..., k - 1. An alternating path with respect to a matching M is a path

which has alternate edges in M; by definition of a matching, then the remaining edges do

not belong to M.

With respect to a maximum matching M in a bipartite graph //, we can define the

following sets. The reader may find Figure 5 helpful to understand these definitions. Let
17
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FIG. 5. A mazimum ma_chin9 and a minimum cover in a bipartite graph.

R_ (Cl) denote the set of rows (columns) reachable by alternating path from all unmatched

columns. All rows in R1 are matched since M is a maximum matching. We include all

unmatched columns in the set C1, since these columns are reachable by alternating paths of

length zero. Similarly, let C3 (R3) denote the set of columns (rows) reachable by alternating

path from all unmatched rows. Again, all columns in C3 are matched, and R3 includes all

unmatched rows. There may be rows and columns that have not been visited by alternating

paths; include such columns in C2 and rows in R2. _.From the definitions of C1 and R3, it can

be shown that all vertices in R2 and C2 are matched, these sets have the same caxdinality,

and that they are perfectly matched to each other.

It should be noted that in a given bipartite graph, some of these sets may be absent. For

instance, if there are no unmatched columns in a maximum matching, then the sets C1 and

R1 will be absent. Similarly, if there are no unmatched rows, Rs and C3 will be absent. If

alternating paths from unmatched rows and unmatched columns visit all rows and columns,

the sets R2 and C2 will be empty.

Maximum matchings and minimum covers are dual concepts in bipartite graphs, and a

minimum cover S of H can be obtained as either R1 U R2 t.JCs, or R1 t3 C2 t3 6'3. These provide

two different vertex separators in the original graph G, if R2 and 6'2 are not empty, and this

freedom can be used to choose a separator that makes the parts A and B less unequal. In

the bipartite graph in Fig. 5, a minimum cover is either the set {1, 2, d} or the set {1, c, d}

with cardinality three.
These row sets and column sets can be used to compute a canonical decomposition of

bipartite graphs called the Dulmage-Mendelsohn decomposition. This decomposition induces

a block triangular form of sparse matrices, which is useful in several sparse matrix algorithms.

A detailed description may be found in [39].

Complexity of the algorithm. Now we consider the complexity of each step of this

algorithm.
The dominant cost is the cost of the Lanczos algorithm for computing the second eigen-
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TABLE 1

Partition8 using median component of the second Laplacian eigenvec_or.

key

BCSPWR09

BCSPWR10

BCSSTK13

CAN 1072

DWT 2680

JAGMESH

LSHP3466

NASA1824

NASA2146

NASA4704

GRD61.101.5

GRD61.101.9

GRDS0.80.5

GRD80.S0.9

edge

separator

IEI[ IA'l IB'[

34 862 861

44 2,650 2,650

3,585 1,002 1,001

165 536 536

85 1,340 1,340

50 468 468

121 1,733 1,733

740 912 912

934 1,073 1,073

1,324 2,352 2,352

endpoint set

61 3,111 3,050

181 3,111 3,050

80 3,200 3,200

238 3,200 3,200

vertex separators

matching

[Axl IA'] - ]AI] IB'l

22 840 861

35 2,615 2,650

295 707 1,001

53 483 536

29 1,311 1,340

26 442 468

61 1,672 1,733

103 809 912

96 977 1,073

185 2,167 2,352

61 3,050 3,050

61 3,050 3,050

80 3,120 3,200

80 3,120 3,200

[SI IAI IBI

20 857 846

31 2,623 2,646

236 862 905

33 525 514

28 1,313 1,339

26 442 468

61 1,672 1,733

102 839 883

74 1,036 1,036

172 2,266 2,266

61 3,050 3,050

61 3,050 3,050

80 3,120 3,200

80 3,120 3,200

vector, which costs O(e) flops per iteration.

We find the median component of the second eigenvector of the Laplacian matrix by an

algorithm that selects the k-th element out of n. This algorithm finds the desired element

by repeatedly partitioning a subarray with respect to a pivot element, and does not sort the

array. This algorithm is O(n) in the average case. and f_(n 2) in the worst case. The selection

of the k-th element can be done in linear time in the worst case by an algorithm designed

by Blum, Floyd, Pratt, Rivest, and Tarjan [8].

The partition into the sets A and B can be done in O(n) time. The bipartite graph

H can be generated in O(e) time, by examining the adjacency list of each vertex at most

once. Let m be the smaller of [A'] and [B'[, and let e' - IE'[. A maximum matching and

the minimum cover S can be obtained in O(x/_e t) time by an algorithm of Hopcroft and

Karp [27]; this algorithm has been efficiently implemented by Duff and Wiberg [14].

6. Results. In this section, we report computational results obtained from the Spectral

Partitioning Algorithm and provide comparisons with the Nested Dissection Algorithm, the

Kernighan-Lin Algorithm, the Fiduccia-Mattheyses Algorithmas implemented by Leiserson

and Lewis [29], and the vertex partitioning based on the multiple minimum degree algorithm

by Liu [31]. Several sparse matrices from the Boeing-Harwell collection [13] and five- and

nine-point grids are partitioned using these algorithms.

The partitions obtained with the Spectral Partitioning Algorithm are tabulated in Ta-

ble 1. The edge separator E1 separates the graph into two parts A' and B _. The sizes of these
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setsare shownin the first group of three columns in the table. We show two vertex separa-

tors obtained from El: the first vertex separator is chosen to be the the smaller endpoint set

of Et; in the table, this set is denoted A1. The second vertex separator S includes subsets

of vertices from both endpoint sets, and is computed by means of a maximum matching to

be a minimum vertex cover of the bipartite graph induced by El.

For the Boeing-Harwell problems, the matching method computes vertex separators that

are, on the average, about 11.5 percent smaller than the separators obtained from the smaller

endpoint set. Since there are two choices for the minimum cover, a good choice also makes

the two part sizes less different.

The edge separators obtained are small relative to the total number of edges in each

graph, except for the BCSSTK13 problem, which has a high average degree. For all problems,

except two, the vertex separators obtained are also relatively small (s < 0.04) in comparison

to the parts generated by the separators. The exceptions are BCSSTK13 and NASA1824.

Both these problems have large second eigenvalue _2. For BCSSTK13, _2 ,_ 0.65; in contrast,

for the 80 × 80 nine-point grid, which has good separators, 3t2 _ 4.6 × 10 -s.

For the grid graphs, vertex separators can be computed by explicitly computing the

second eigenvector by the methods in Section 4. Here, we investigate the partitions obtained

by the Spectral Partitionin 9 Algorithm with this eigenvector computed by the Lanczos algo-

rithm. We partitioned the 61 × 101 grids initially into two sets with 3050 (50 columns) and

3111 (51 columns) vertices. The edge separator obtained joins vertices in the fiftieth column

to vertices in the fifty first column. The vertex separator computed is the middle (fifty first)

column.

In the square grids, the second eigenvalue has geometric multiplicity two, and there are

two linearly independent eigenvectors. The eigenvectors in Section 4, _,1' and V_1,2,obtained

by the Kronecker products of the Laplacian eigenvectors of the path, can be used to compute

two sets of edge separators. One edge separator joins vertices in the fortieth column to

vertices in the forty first column, and the other joins vertices in the fortieth row to the forty

first row. In general, the Lanczos algorithm will compute a linear combination of the two

eigenvectors described above, leading to a different (and larger) edge separator. However,

with the starting vector we used, the Lanczos algorithm converged to the eigenvector _,2'

and the latter edge separator was computed. The computed vertex separator consists of the

vertices in the fortieth row.

We are interested in comparing the quality of the separators computed by the spectral

algorithm with the separators computed from a modified Automated Nested Dissection al-

gorithm. The nested dissection routine in SPARSPAK, FNSEP, finds a pseudo-peripheral

vertex in the graph, and generates a level structure from it. It then chooses the median

level in the level structure as the vertex separator. However, this choice may separate the

graph into widely disparate parts. We modified this routine such that the vertex separator

is chosen to be the smallest level k such that the first k levels together contain more than

half the vertices. A vertex separator is obtained by removing from the vertices in level k

those vertices which are not adjacent to any vertex in level k + 1. By the construction of the

level structure, the removed vertices are adjacent to vertices in level k - 1, and hence these

are added to the part containing vertices in the first k - 1 levels. The other part has vertices
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TXBLE 2

Partitions from Automated Nested Dissection.

key

BCSPWR09

BCSPWR10

BCSSTK13

CAN 1072

DWT 2680

JAGMESH

LSHP3466

NASA1824

NASA2146

NASA4704

GRD61.101.5

GRD61.101.9

GRDS0.80.5

GRD80.80.9

vertex

separator

ISl IAI [BI

68 762 893

169 2,421 2,710

302 764 937

64 478 530

28 1,327 1,325

26 455 455

59 1,711 1,696

137 839 848

131 1,008 1,007

296 2,245 2,163

61 3,050 3,050

iii 3,025 3,025

80 3,160 3,160

113 3,136 3,151

edge

separators

JEll [AI IB U S[ IE21 IA U SI IBI

80 762 961

209 2,421 2,879

3,035 764 1,239

108 478 594

84 1,327 1,353

50 455 481

118 1,711 1,755

910 839 985

1,473 1,008 1,138

2,134 2,245 2,459

121 3,050 3,111

327 3,025 3,131

158 3,160 3,240

333 3,136 3,264

130 830 893

317 2,590 2,710

4,792 1,066 937

342 542 530

84 1,355 1,325

50 481 455

116 1,770 1,696

1,347 976 848

1,569 1,139 1,007

2,424 2,541 2,163

121 3,111 3,050

333 3,131 3,025

158 3,240 3,160

339 3,249 3,151

in levels k + 1 and higher. Statistics about the vertex separators so obtained are shown in

Table 2.

We can also obtain two edge separators using the level structure from the set of edges

joining the vertex separator to the two parts A and B. The sizes of the edge separators and

the part sizes they generate are also shown in Table 2.

The Spectral Partitioning Algorithm computes smaller vertex separators than the Nested

Dissection Algorithm; on the average, the spectral vertex separators are about 65 percent of

the nested dissection vertex separators. The spectral algorithm also succeeds in keeping the

part sizes less disparate than the latter algorithm. The average difference in the part sizes

is about 7 percent for nested dissection, but there are problems for which this difference is

greater than 20 percent.

For most problems, the spectral algorithm also finds smaller edge separators in the graph

than nested dissection. There are a few problems where the best edge separator obtained

by nested dissection is smaller than that obtained by the spectral algorithm, but the former

edge separators separate the graph into parts with widely differing sizes. In the spectral

algorithm, equal part sizes can be obtained by partitioning with respect to the median

eigenvector component; any other choice of part sizes can also be obtained by partitioning

with respect to the appropriate component. Since edge separators are computed in nested

dissection by means of a level structure, part sizes cannot be controlled as effectively.

For the five-point grids, the vertex separators obtained by the Nested Dissection Algo-

rithm correspond to a 'diagonal' of the grid. For the nine point grids, the algorithm fails to
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find the smallest vertex separators. For all the grid problems, automated nested dissection

fails to find the optimal edge separators.

6.1. Kernighan-Lin Algorithm. The Kernighan-Lin Algorithm is a heuristic algo-

rithm that can be used to compute small edge separators. We investigated the use of this

algorithm separately and in conjunction with the Spectral Partitioning Algorithm, to com-

pute edge and vertex separators.

The Kernighan-Lin algorithm begins with an initial partition of the graph into two

subsets A', B' which differ in their sizes by at most one. At each iteration, the algorithm

chooses two subsets of equal size to swap between A and B, thereby reducing the number

of edges which join A to B. We refer the reader to Kernighan and Lin [28], or Gilbert and

Zmijewski [22] for a detailed description of how the algorithm chooses the subsets to be

swapped. The algorithm terminates when it is no longer possible to decrease the size of the

edge separator by swapping subsets.

One initial partition we could use is the edge partition obtained from the Spectral Parti-

tioning Algorithm, and a second choice is to use a randomly computed initial partition. We

consider the four graphs with the largest edge separators from Table 1, and report the sizes

of the edge and vertex separators obtained with the Kernighan-Lin algorithm in Table 3.

An edge separator was computed first, and then a vertex separator was obtained as before

by matching methods. The column labeled 'SP' corresponds to the output of the spectral

algorithm, 'SP,KL' corresponds to the Kernighan-Lin algorithm with initial partition from

the spectral algorithm, and 'KL' corresponds to the Kernighan-Lin algorithm with a random

initial partition.

Application of the Kernighan-Lin algorithm with the spectral partition as input succeeds

in reducing the sizes of the edge separator considerably for two of the four problems. Thus if

one is primarily concerned with small edge separators, applying the Kernighan-Lin algorithm

to the partition produced by spectral algorithm could be worthwhile. However, the size of

the vertex separator is not improved. For two of the problems, the size remains the same;

for a third, it decreases by one, and the size increases for a fourth problem. Also, for two of

the four problems, the spectral algorithm by itself finds better vertex separators than those

obtained by the Kernighan-Lin algorithm alone.

Gilbert and Zmijewski [22] have observed that the quality of the partition found by the

Kernighan-Lin algorithm strongly depends on the quality of the initial partition. They show

for a grid graph that it is possible to choose a bad initial partition for the Kernighan-Lin

algorithm such that the algorithm will not find a minimum edge separator.

Edge separators obtained from the Kernighan-Lin algorithm with initial spectral par-

tition are better than those obtained from the application of the Kernighan-Lin algorithm

with random initial partitions for two of the four problems. Use of the initial partition from

spectral algorithm also helps the Kernighan-Lin algorithm to converge faster. On these four

problems, the Kernighan-Lin algorithm ran on the average about 3.2 times faster when the

spectral partition was used. Thus the spectral algorithm could be used to generate initial

partitions of high quality for the Kernighan-Lin algorithm.
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TABL_ 3

Partitions from the Kernighan-Lin Algorithm. The first table describes the edge separators, and the second,

vertez separators.

key IA'I IB'I IExl
SP SP,KL KL

1,002 1,001

912 912

1,073 1,073

2,352 2,352

BCSSTK13

NASAl824

NASA2146

NASA4704

3,585 2,880 3,550

740 739 739

934 870 870

1,324 1,313 1,525

key SP SP,KL KL

ISI IAI Inl ISl IAI Inl ISl IAI 1nl

BCSSTK13

NASAl824

NASA2146

NASA4704

236 862 905

103 839 883

74 1,036 1,036

172 2,266 2,266

250 870 883

102 830 892

74 1,036 1,036

172 2,266 2,266

284 772 947

102 830 892

74 1,036 1,036

204 2,163 2,337

6.2. Comparison with Leiserson-Lewis' and Liu's results. In [29] Leiserson and

Lewis have used the Fiduccia-Mattheyses Algorithm [16] to compute vertex separators and

then to order sparse matrices. Liu [31] uses the multiple minimum degree ordering algorithm

to compute vertex separators, and then improves the separator (by decreasing its size and

making the parts less unequal) by a matching technique. He uses his separator algorithm

in [30] to compute a good ordering for parallel factorization. In both implementations

sparse matrices from the Boeing-Harwell Collection are used, so we are able to give a direct

comparison of the top level vertex bisector here. The figures in Table 4 are obtained directly

from Liu's report [31] and from Lewis (personal communication). In both cases we have

added small disconnected components, which were created by the vertex separators, to the

smaller of the two sets IAI or IBI. For the Leiserson-Lewis results we list in some instances

two different partitions, where it was difficult to judge which one should be considered better.

The results in Table 4 show that the current sparse matrix algorithms yield very good

partitions, which generally can be judged to better than the ones produced by the Spectral

Partitioning Algorithm. However, neither one of the two algorithms offers any easy prospect

of a parallel implementation. Another factor which cannot be evaluated in this comparison

is the relative excecution time of the algorithms.

7. Convergence. The dominant computation in the Spectral Partitioning Algorithm is

the computation of the second eigenvector of the Laplacian matrix by the Lanczos algorithm.

Since the Lanczos algorithm is an iterative algorithm, the number of iterations and the time
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TABLE 4

Ve_ez separators f'eora _he Leiserson-Lewis and fhe Liu algom_hms.

key Leiserson-Lewis Liu

iS[ IAI ]BI ISl [A[ IBI

BCSPWR09

BCSPWR10

BCSSTK13

CAN10724

DWT2680

LSHP3466

7 858 854

18 2641 2634

228 1001 774

242 892 869

31 536 506

34 522 516

28 1339 1313

46 2381 1139

57 1708 1701

8 1026 689

19 2661 2620

298 941 764

38 665 368

26 1369 1283

61 1727 1678

required to compute this eigenvector is dependent on the number of correct digits needed in

the eigenvector components. In this section, we describe the details of an implementation of

the Lanczos algorithm for computing this eigenvector, and study how the quality of computed

separators depend on the accuracy in the second eigenvector.

7.1. The Lanczos algorithm. The most efficient algorithm for computing a few eigen-

values and eigenvectors of large, sparse symmetric matrices is the Lanczos algorithm. Since

the Lanczos algorithm is discussed extensively in the textbook literature [23, 35], we do

not include a detailed description of the standard algorithm here. The convergence of the

Lanczos algorithm depends critically on the distribution of the eigenvalues of the underlying

matrix. Usually the extreme eigenpairs, i.e. the largest and smallest, are found first. How-

ever it is also known that for operators such as the discrete Laplacian for a grid problem,

or more generally for positive definite finite element matrices which are approximations to

elliptic operators, the Lanczos algorithms converges in most cases to the extreme right, i.e.

the very large eigenvalues, before delivering good approximations to the eigenvalues close

to zero. This behavior can be explained with the so-called Kaniel-Paige-Saad theory (see

[35]). When computing the smallest positive eigenvalue of the Laplacian matrix Q, one faces

exactly the same situation: the Lanczos algorithm delivers very good approximations to

the large eigenvalues before converging to the desired second smallest eigenvalue. Thus the

Lanczos algorithm potentially requires long runs before it computes an approximation to the

second eigenpair.

Several potential modifications can be incorporated in the simple Lanczos algorithm

for the faster computation of the second eigenvector, but unfortunately none of them is

applicable here. The first obvious improvement of the situation would be to apply the

shifted and inverted operator, i.e. to consider the eigenvalue problem

(8) (Q - _I)-1u = _ u.

This is a standard technique in finite element applications [24], and has been used very

successfully in a variety of implementations of the Lanczos algorithm [15, 25, 36, 42]. The
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eigenvectors remain the same, and the eigenvalues # of (8) are related to the eigenvalues A of

Q by a simple transformation. In the situation here, a shift o" chosen near zero, would result

in a very rapid convergence to the eigenvalue )_2. This approach cannot be taken here, since

it requires the factorization of the matrix Q - _I, which is a large sparse symmetric matrix

with the same sparsity structure as M. Our original goal, however, is to find an efficient

reordering of M, so to be able to factor it efficiently. Hence the 'shift and invert' approach

would require us to factor a matrix closely related to M, and thus cannot be considered in

this application.

Reorthogonalization methods are a second set of techniques, which have been applied to

the Lanczos algorithm, in order to improve both its reliability and computational efficiency

[37, 43, 36]. For the computation of the second eigenvalue and vector, only a limited amount

of reorthogonalization is necessary. No reorthogonalizations are performed at the right end of

the spectrum, with respect to the large eigenvalues, since there is no interest in the accurate

computation of eigenvalues at this end. Also it is unlikely that preserving orthogonality at

the right end will have any impact on the convergence of the Lanczos algorithm towards the

second smallest eigenvalue which is at the left end of the spectrum.

However, the first eigenvector z_t of Q is e__,the vector of all ones, and this vector can

be used for reorthogonalization at the left end of the spectrum. At each step we explicitly

orthogonalize the current Lanczos vector against _e. This is effectively a deflation of the

problem and now the eigenpair Az,z__ will be computed as the first eigenpair on the left end

of the spectrum.

Another important consideration for the Lanczos algorithm is the choice of a starting

vector. In the absence of any other information, a random starting vector is appropriate.

However, many practical matrix problems are presented already in an ordering relevant to

the formulation of the problem, sometimes even in an ordering which is close to a good band

or envelope ordering. In this case it is desirable to transmit this ordering information to

the Lanczos algorithm. This was accomplished by setting the starting vector in the Lanczos

algorithm to r__,with rl = i - (rt + 1)/2. In this way the starting vector looked very much

like a Fiedler vector for the original ordering of the matrix as presented to the algorithm. In

most cases this turned out to be a better choice than a random starting vector, because it

resulted in faster convergence to the second eigenvector.

Finally, another point needs to mentioned. Considering the very simple structure of the

Laplacian matrix Q, and the seeming simplicity of the task of computing just one eigenpair

at the left end of the spectrum, one might be inclined to avoid the complexities of the Lanczos

algorithm, and attempt to solve this problem with a simple shifted power method, and a

deflation procedure analogous to the one described above. This was tried as a first attempt

at the computation of a second eigenvector, but with very poor results. The power method

converged exceedingly slowly, in many cases exhibiting the phenomenon of rnisconvergence

[38]. This meant that the power method settled down at an eigenvalue of Q, which was not

the Fiedler value, and whose eigenvector correspondingly delivered a very poor reordering.

The results here prove the claims of [38] to be correct that even in the simplest cases the

Lanczos algorithm is the method of choice, when computing eigenvalues of large, sparse,

symmetric matrices.
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The above discussion can now be summarized in the following more complete description

of the special form of the Lanczos algorithm:

ALGORITHM 1.

1. Given the sparsity structure of a matriz M, form the Laplacian matriz Q.

2. Pick a starting vector 7., with ri = i -- (n + 1)/2.

3. Carry out a Lanczos iteration with the matriz Q and starting vector r__. At each

step orthogonalize the Lanczos vector against the vector e_. Stop when a second

eigenvector has been determined to sufficient accuracy.

In the algorithm described above, we have assumed that the Laplacian Q(G) is irre-

ducible, or equivalently that the graph G is connected. Many of the sparse matrices from

the Boeing-Harwell collection have disconnected adjacency graphs. We can apply the above

algorithm to each connected component separately, but there is a better approach, which we

now describe.

If a graph G has k connected components, then its Laplacian Q(G) has its first k

eigenvalues A1, A2, ..., /Xk equal to zero. For each connected component Cj of G, let z_j

be the vector with ones in components corresponding to the vertices in Cj, and zeros in all

other components. The vectors z__l, z__, ..., z_a, can be chosen to be independent eigenvectors

corresponding to the multiple eigenvalue zero. The next smallest eigenvalue Ak+l is positive,

and a corresponding eigenvector z_k+l is the vector used to partition the graph.

At each step of the Lanczos algorithm, we can now orthogonalize the Lanczos vector

simultaneously against the first k eigenvectors z__l, ..., z_h, since these vectors have nonzeros

in disjoint rows. This approach has the advantage that it increases the vector length in the

Lanczos algorithm, and thus permits efficient vectorization.

7.9.. Convergence and quality of separators. We now present our results on the

number of iterations and the time required by the Lanczos algorithm as the second eigen-

vector is computed to a set of different tolerances. The tolerance criterion, tol, is the 2-norm

of the residual vector Qu_ - Au_, where ,X, u_ are the computed quantities at the current step

in the algorithm. We also study the quality of the vertex separators obtained from these

approximate eigenvectors.

We report results for a few representative problems from the Boeing-HarweU collection

and for two grid problems in Table 5. The number of iterations reported are multiples of

twelve, since we checked for convergence in "the Lanczos algorithm by an eigendecomposition

of the tridiagonal matrix only after every twelve iterations. Times are in seconds on a Cray

Y-MP, using our vectorized Lanczos code. For each value of tol, we report the size of the

vertex separator and the corresponding part sizes computed by the Spectral Partitioning

Algorithm. Blank entries in the separator columns mean that the separator computed is the

same as the one obtained with the previous tolerance.

For most of the problems that we have computational results, it is only necessary to

compute the second eigenvector to a tolerance of about 10 -2, to obtain the best separator

obtained by the spectral algorithm. This accuracy only requires a modest number of Lanczos

iterations, and can be obtained reasonably fast. One class of notable exceptions is the power

network problems, illustrated by BCSPWR10 in the table. In these problems, a vertex
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TABLE5
Convergence Resul_8. Times are in seconds on a C'ray Y-MP.

Key

NASA4704

BCSSTK13

BCSPWR10

Wol Items Time

10 -1 0.27

10-2

10-3

10-4

10-5

10-6

10-1

10-2

10-3

10 -4

10-5

10-8

10-I

10-2

10-3

10 -4

GRD61.101.5 10 -2

10-3

10-4

10-5

10-e

GRD61.101.9 10 -1

10-2

10 -3

10 -4

10-5

10-6

24

60 0.65

72 0.80

96 1.10

108 1.30

120 1.50

36 0.23 236

36 0.23

48 0.30

60 0.39

72 0.49

84 0.60

24 0.24

84 0.92

252 7.20

300 11.90

12 0.15

36 0.42

96 1.26

108 1.47

120 1.67

12 0.16

24 0.30

108 1.53

120 1.76

144 2.38

156 2.70

ISI IAI IBI
172 2266 2266

905 862

171 2619 2510

72 2642 2586

34 2643 2623

31 2646 2623

101 3050 3010

61 3050 3050

101 3030 3030

61 3050 3050
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has a small average degree, and the graphs have large diameters, and hence computing

global information in such graphs is relatively slow. Hence a large number of iterations are

necessary to compute the second eigenvector accurately. In the BCSPWR10 problem, after

300 iterations, the norm of the residual in the eigenvalue equation was about 10 -4. In this

problem, the vertex separator decreases in size as the eigenvector becomes more accurate.

8. Conclusions. We have considered an algebraic approach to computing vertex sep-

arators, and have shown that the eigenvalues of the Laplacian matrix can be used to obtain

lower bounds on the sizes of the separators. We have described a heuristic algorithm for

computing vertex separators from the second eigenvector of the Laplacian. It is enough to

compute the eigenvector to low accuracy to obtain good separators for most problems.

Other approaches to computing vertex separators in sparse matrix algorithms have been

considered by several authors. Automatic Nested Dissection (AND) is used in SPARSPAK to

compute fill-reducing orderings of sparse matrices [20]. More recently, a parallel Kernigha_-

Lin algorithm was employed to compute orderings appropriate for parallel factorization by

Gilbert and Zmijewski [22]. The separators computed by the spectral algorithm compare

favorably with those obtained by AND or the Kernighan-Lin algorithm. The results with

the Spectral Partitioning Algorithrr_re not quite as good as those obtained by Leiserson and

Lewis [20] and Liu [31].

The spectral algorithm has an advantage over all these algorithms in that its domi-

nant computation is an eigenvector computation, and is fairly straight forward to compute

e_ciently on medium size multiprocessors used in scientific computing. For these other al-

gorithms, it is either not clear how to implement them in parallel or the degree of parallelism

is not high.

The computation of good separators is useful in any algorithm that employs the divide

and conquer paradigm. In particular the Spectral Partitioning Algorithrrtwi11 be also useful

for VLSI layout problems [5]. But our immediate intent was to use the spectral separator

algorithm to compute good orderings for parade1 sparse factorizations. In order to accomplish

our goals in this respect more work remains to be done. We intend to compute and study

the quality of orderings obtained by the recursive application of the Spectral Partitioning

Algorithm. A faster computation of the Fiedler vector using Davidson's method might be

possible. Finally much remains to be understood about the theoretical underpinneings of the

Spectral Partitioning Algorithm. How do Laplacian eigenvectors partition graphs? It will be

useful to obtain results on the quality of the partitions computed by Laplacian eigenvector

components. It will also be helpful to identify classes of graphs that are partitioned optimally

by spectral algorithms.

Even though much more needs to be done, in order to demonstrate the usefulness of the

Spectral Partitioning Algorithmfor reordering sparse matrices in parallel our results are very

encouraging for the following reasons: These results are very encouraging for the following

reasons:

1. This a completely new type of algorithm for the graph partitioning problem and

hence potentially for reordering sparse matrices.

2. Since the algorithm involves mainly floating point computation it becomes very

competitive on very large problems on machines like the Cray Y-MP, where floating
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point arithmetic is considerably faster than integer arithmetic.

3. Since the algorithm involves mainly dense and sparse vector operations, it can be

easily implemented in parallel.
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